Assessment Schedule – 2014

Scholarship Calculus (93202)

Evidence Statement

Where a response to any half-question uses a novel or unexpected solution, markers use their professional judgement and guidance from the Panel Leader to apply the following:

Combining part-question scores:

QUESTION ONE (8 marks)

For $k = 1$, $t^2 - 5t + 5 = 1$ gives $t^2 - 5t + 4 = 0$ so $t = 1$ or $t = 4$. For $k = -1$, $t^2 - 5t + 5 = -1$ gives $t^2 - 5t + 6 = 0$ so $t = 2$ or $t = 3$. The full solution set is $t \in \{1,2,3,4\}$.

● **EITHER**

Let $u = \ln(\sin^{-1} e^{x})$. Then $u^{5} = u$. So $u(u^4 - 1) = 0$, giving $u = 0$ or $u = \pm 1$ (ruling out the complex roots $u = \pm i$). Case 1: $u = 0$.

$$
\ln(\sin^{-1} e^{x}) = 0
$$

$$
\sin^{-1} e^{x} = 1
$$

$$
e^{x} = \sin 1
$$

Solution is $x = \ln(\sin 1)$. Case 2: $u = 1$.

> $ln(sin^{-1} e^{x}) = 1$ $\sin^{-1} e^x = e$ $e^x = \sin(e)$

It appears another solution is $x = \ln(\sin e)$. However, since $\sin^{-1}(e^{\ln(\sin e)}) = \sin^{-1}(\sin e) = \pi - e$ this solution *is not valid*; it does not give *e* as required. Case 3: $u = -1$.

> $ln(sin^{-1} e^{x}) = -1$ $\sin^{-1} e^{x} = \frac{1}{e}$ $e^x = \sin \frac{1}{x}$ \boldsymbol{e}

Solution is $x = \ln(\sin{\frac{1}{e}})$.

There are <u>two</u> solutions: $x_1 = \ln(\sin 1)$ and $x_2 = \ln(\sin \frac{1}{e})$.

$$
\ln \sin 1 \approx -0.1726
$$

$$
\ln \sin e \approx -0.8897
$$

$$
\ln \sin \frac{1}{e} \approx -1.0227
$$

Constraints: $x \geq 0$ and $y \geq 0$ $x + y \leq 150$ $6400x + 800y \le 1000000$ or equivalent $8x + 10y \le 1250$ $3 \times 2x \ge 4 \times 3y$ or equivalent $x \ge 2y$

Daily Income = $200x + 1800y$

At (96,48) the income is \$201 600 (96 double rooms and 48 triple rooms).

This uses only 144 of the available 150 rooms.

Resolutions:

- (i) If they could find an extra \$40 000, the profit would be maximized at 100 double and 50 triple rooms with an increase in revenue of \$8400.
- (ii) Change the charges so that a double room charge is \$1400 and a triple \$1575. This would change the income to \$214 375 if they had 125 double rooms and 25 triple rooms. However, the change in price might change the demand.

QUESTION TWO (8 marks)

(a) First, let $z = x^2$, then $z^2 - 2kz + q^2 = 0$.

This has roots $z = \frac{2k \pm \sqrt{4k^2 - 4q^2}}{2} = k \pm \sqrt{k^2 - q^2}$.

<u>Case 1:</u> $q^2 > k^2$ which arises when $|q| > |k|$. So z is complex, and x is **complex**; the roots are distinct.

<u>Case 2:</u> $q^2 = k^2$ which arises when $q = \pm k$. Then $z = k$.

Case 2a:

If $k < 0$ then the solutions are **complex** roots: $x = \pm \sqrt{k}$ i.

Case 2b:

If $q = k = 0$ then $z = 0$ is the only root (a **repeated** root).

Case 2c:

If $k > 0$ then the solutions are real roots: $x = \pm \sqrt{k}$.

Case 3: $q^2 < k^2$ which arises when $|q| < |k|$. Then z is real.

Case 3a:

If $k < 0$ then both roots are negative since $\sqrt{k^2 - q^2} < k$. So the four roots are **complex** and distinct.

Case 3b:

If $k > 0$ then both roots are positive. So the four roots are real and distinct unless $q = 0$, and then there is a **repeated** root of $x = 0$.

Diagrammatically (not required):

● EITHER

We need to find the intersection of the curves $y = 9 \csc^2 x$ and $y = 16 \sin^2 x$.

$$
16 \sin^2 x = 9 \csc^2 x
$$

$$
\sin^4 x = \frac{9}{16}
$$

$$
\sin x = \pm \frac{\sqrt{3}}{2}
$$

From the graph it is clear that $x = \frac{\pi}{3}$ and $x = \frac{2\pi}{3}$ are the intersections.

Now, note that $16 \sin^2 x = 8 - 8 \cos 2x$, which allows us to find the integrals. \int 9 cosec² x dx = -9 cot x + C

 $\int 16 \sin^2 x \, dx = 8x - 4 \sin 2x + C$ using a trigonometric identity on the integrand.

$$
A = C = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (9 \csc^2 x - 16 \sin^2 x) dx = 6\sqrt{3} - \frac{4\pi}{3}
$$

$$
B = \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} (16 \sin^2 x - 9 \csc^2 x) dx = \frac{8\pi}{3} - 2\sqrt{3}
$$

We write the equations as an augmented matrix.

$$
\begin{bmatrix} c+2 & 0 & c-2 & 0 \ c+3 & c-3 & 0 & 0 \ 0 & c+5 & c-5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{c-2}{c+2} & 0 \ c+3 & c-3 & 0 & 0 \ 0 & c+5 & c-5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{c-2}{c+2} & 0 \ 0 & c-3 & \frac{-(c+3)(c-2)}{c+2} & 0 \ 0 & c+5 & c-5 & 0 \end{bmatrix} \sim
$$

$$
\begin{bmatrix} 1 & 0 & \frac{c-2}{c+2} & 0 \\ 0 & 1 & \frac{-(c+3)(c-2)}{(c+2)(c-3)} & 0 \\ 0 & c+5 & c-5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{c-2}{c+2} & 0 \\ 0 & 1 & \frac{-(c+3)(c-2)}{(c+2)(c-3)} & 0 \\ 0 & 0 & c-5 + \frac{(c+5)(c+3)(c-2)}{(c+2)(c-3)} & 0 \end{bmatrix}
$$

The case we need to consider in detail is when $c - 5 + \frac{(c+5)(c+3)(c-2)}{(c+2)(c-3)} = 0$.

$$
\frac{(c+5)(c+3)(c-2)}{(c+2)(c-3)} = -(c-5)
$$

(c+5)(c+3)(c-2) = -(c-5)(c+2)(c-3)

$$
c^3 + 6c^2 - c - 30 = -c^3 + 6c^2 + c - 30
$$

$$
2c^3 - 2c = 0
$$

$$
c(c-1)(c+1) = 0
$$

$$
c \in \{-1,0,1\}
$$

Candidates with knowledge of matrix determinants could find

$$
\begin{vmatrix} c+2 & 0 & c-2 \ c+3 & c-3 & 0 \ 0 & c+5 & c-5 \end{vmatrix} = 2c^3 - 2c
$$

with a similar amount of work, and note that when this determinant is zero, the system does not have a unique solution.

Since the system of equations always has the solution $(x, y, z) = (0, 0, 0)$ the system has this unique solution when $c \notin \{-1,0,1\}$, and has infinitely many solutions (on a line) otherwise.

QUESTION THREE (8 marks)

(a) We need to find the given integral, and solve to find the value(s) of c which make it zero.

$$
\int_{0}^{12} \rho(x)(x - c) dx = 0
$$

$$
\int_{0}^{12} bx^{r} (12 - x)(x - c) dx = 0
$$

$$
b \int_{0}^{12} ((12 + c)x^{r+1} - 12cx^{r} - x^{r+2}) dx = 0
$$

$$
\left[\frac{(12 + c)x^{r+2}}{r+2} - \frac{12cx^{r+1}}{r+1} - \frac{x^{r+3}}{r+3} \right]_{0}^{12} = 0
$$

$$
\frac{(12 + c)12^{r+2}}{r+2} - \frac{12c \times 12^{r+1}}{r+1} - \frac{12^{r+3}}{r+3} = 0
$$

$$
\frac{12(12 + c)}{r+2} - \frac{12c}{r+1} - \frac{144}{r+3} = 0
$$

$$
\therefore c = \frac{12(r + 1)}{(r+3)}
$$

● EITHER

The maxima and minima of $h_p(x)$ occur at the same places as the maxima and minima of $f(x)$ and $g(x)$; these are 1 and 3, and 25 and 27 respectively.

So the maximum of $h_p(x)$ is $3^{1-p}27^p$ and the minimum is $1^{1-p}25^p$. Therefore $S(p) = 3^{1-p}27^p - 25^p$. $\frac{dS}{dp}$ = - ln 3 × 3^{1-p} 27^p + ln 27 × 3^{1-p} 27^p - ln 25 × 25^p = 0 $3^{1-p}27^p(\ln 27 - \ln 3) = \ln 25 \times 25^p$ $\ln 25 \times 25^p = 3 \times (\ln 27 - \ln 3) \frac{1}{21}$ $\frac{1}{3^p} 27^p$ $\frac{3^p \times 25^p}{27^p} = \frac{3(3 \ln 3 - \ln 3)}{\ln 25}$ 25 9 $\frac{p}{2} = \frac{6 \ln 3}{2 \ln 5} = \frac{3 \ln 3}{\ln 5}$ $p = log_{25}$ 9 3 ln 3 $\left(\frac{3 \ln 3}{\ln 5}\right) = \frac{\ln \left(\frac{3 \ln 3}{\ln 5}\right)}{\ln 25}$ ln 5 $\ln \frac{25}{9}$ $=\frac{\ln\left(\frac{\ln 27}{\ln 5}\right)}{25}$ $\ln \frac{25}{9}$ ≈ 0.702

Several forms are given; any exact form is sufficient.

Candidates might simplify $S(p) = 3^{1+2p} - 25^p$ at the start.

Critical Path Tasks $A - B - D - E - G - I - J - K$, Duration 43 weeks (see diagram below) Crash the **least expensive activities on the critical path**:

- Crash activity K from 3 weeks to 2 weeks $$2,000$
- Crash activity B from 7 weeks to 6 weeks \$2,500

Most economical cost to the clients is **\$8,900**

There are now 2 critical paths:

Tasks $A - B - D - E - G - I - J - K$ Tasks $A - B - D - E - G - H - J - K$

QUESTION FOUR (8 marks)

(a) If $\text{cis}(x^2) = \text{cis} x$ then $x^2 = x + 2k\pi$ where k is an integer. When $k = 0$, $x^2 = x$ so $x = 0$ or $x = 1$. In general, $x^2 - x - 2k\pi = 0$ has roots at $x = \frac{1 \pm \sqrt{1 + 8k\pi}}{2}$. Note that when $k < 0$, these will be complex arguments. At $k = 0$ $x_1 = 0$ $x_2 = 1$ At k

At
$$
k = 1
$$
 $x_3 = \frac{1}{2} - \frac{\sqrt{1+8\pi}}{2} \approx -2.06$ $x_4 = \frac{1}{2} + \frac{\sqrt{1+8\pi}}{2} \approx 3.06$
At $k = 2$ $x_5 = \frac{1}{2} - \frac{\sqrt{1+16\pi}}{2} \approx -3.08$ $\frac{\text{but not}}{\text{at } \frac{1}{2} + \frac{\sqrt{1+16\pi}}{2}} \approx 4.08 > \pi$

All other solutions with $k > 2$ are outside the required domain.

● EITHER

Using the given rule, the rule for the second derivative is

$$
(uvw)'' = u''vw + u'v'w + u'vw' + u'v'w + uv''w + uv'w' + u'vw' + uv'w' + uvw''
$$

= $u''vw + uv''w + uvw'' + 2u'v'w + 2uv'w' + 2u'vw'$

Finding the full form of the solution can be shortened by the symmetry of the problem; the coefficients in each row are equal.

 $(uvw)''' = 1u'''vw + 1uv'''w + 1uvw'''$ $+ 3u''v'w + 3u''vw' + 3u'v''w + 3uv''w' + 3u'vw'' + 3uv'w''$ $+ 6u'v'w'$ $A = B = C = 1$

$$
f_{\rm{max}}(x)=\frac{1}{2}x
$$

$$
D = E = F = G = H = I = 3
$$

$$
J=6
$$

Using the definition of the binomial coefficients and rearranging the factorials:

$$
\frac{n!}{(n-r)! \, r!} = \frac{(n+1)!}{(n+1-(r-1))! \, (r-1)!}
$$
\n
$$
\frac{n!}{(n-r)! \, r!} = \frac{(n+1)!}{(n-r+2)! \, (r-1)!}
$$
\n
$$
\frac{(n-r+2)!}{(n-r)!} = \frac{(n+1)! \, r!}{n! \, (r-1)!}
$$

Most of the factorials cancel:

$$
(n - r + 2)(n - r + 1) = (n + 1)r
$$

\n
$$
n^2 - nr + n - nr + r^2 - r + 2n - 2r + 2 = nr + r
$$

\n
$$
n^2 - 3nr + 3n + r^2 - 4r + 2 = 0
$$

\n
$$
n^2 + (3 - 3r)n + (r^2 - 4r + 2) = 0
$$

As a quadratic in n , the roots are:

$$
n = \frac{3r - 3 \pm \sqrt{(3 - 3r)^2 - 4(r^2 - 4r + 2)}}{2}
$$

$$
n = \frac{3r - 3 \pm \sqrt{9 - 18r + 9r^2 - 4r^2 + 16r - 8}}{2}
$$

$$
n = \frac{3r - 3 + \sqrt{5r^2 - 2r + 1}}{2}
$$

(as only the larger root is useful).

Trying some values of r , most give irrational values for n

 $r = 1$ $n = 1$ For $1 < r < 6$ we find *n* is not an integer. $r = 6$ $n = 14$ So $\binom{14}{6} = \binom{15}{5} = 3003$.

Note that searching for an integer value of $\sqrt{5r^2 - 2r + 1}$ by solving $5r^2 - 2r + 1 = k^2$ for various values of k would need a search to $k = 13$.

Other – much larger but acceptable – integer solutions exist.

QUESTION FIVE (8 marks)

(a) Finding the first derivative, then rearranging the second derivative to contain only y :

$$
\frac{dy}{dx} = e^{e^{cx}} \cdot e^{cx} \cdot c
$$

$$
\frac{d^2y}{dx^2} = e^{e^{cx}} \cdot e^{cx} \cdot c \cdot e^{cx} \cdot c + e^{e^{cx}} \cdot e^{cx} \cdot c \cdot c
$$

$$
\frac{d^2y}{dx^2} = e^{e^{cx}} \cdot e^{cx} \cdot c^2 \cdot (e^{cx} + 1)
$$

$$
\frac{d^2y}{dx^2} = c^2 \cdot y \cdot \ln y \cdot (1 + \ln y)
$$

Or, with logarithms

$$
\ln y = e^{cx}
$$

\n
$$
\frac{1}{y} \frac{dy}{dx} = ce^{cx}
$$

\n
$$
\frac{dy}{dx} = y \cdot ce^{cx}
$$

\n
$$
\frac{d^2y}{dx^2} = \frac{dy}{dx}ce^{cx} + yc^2e^{cx}
$$

\n
$$
= yc^2e^{cx}e^{cx} + yc^2e^{cx}
$$

\n
$$
= c^2 \cdot y \cdot e^{cx} \cdot (1 + e^{cx})
$$

\n
$$
= c^2 \cdot y \cdot \ln y \cdot (1 + \ln y)
$$

● EITHER

The function is only defined when $1 - x^2 - y^2 \ge 0$. This is the region inside a circle of radius 1, centred at (0,0).

The boundaries of the rectangle arise from the other terms:

$$
(x2 - A)(y2 - (1 - A)) = (x + \sqrt{A})(x - \sqrt{A})(y + \sqrt{1 - A})(y - \sqrt{1 - A})
$$

The four lines are $x = \pm \sqrt{A}$ and $y = \pm \sqrt{1 - A}$. The corners are $(\pm \sqrt{A}, \pm \sqrt{1 - A})$.

Since $(\sqrt{A})^2 + (\sqrt{1-A})^2 = A + 1 - A = 1$ the corners lie on the circle.

The area of the circle is π .

The area of the rectangle is $R = 4\sqrt{A}\sqrt{1 - A}$.

$$
4\sqrt{A(1-A)} = \frac{\pi}{2}
$$

$$
\sqrt{A(1-A)} = \frac{\pi}{8}
$$

$$
A(1-A) = \frac{\pi^2}{64}
$$

$$
A^2 - A + \frac{\pi^2}{64} = 0
$$

$$
A = \frac{1 \pm \sqrt{1 - \frac{\pi^2}{16}}}{2}
$$

 $A \approx 0.1905, 0.8095$.

First, note we have $y = \frac{1}{x}$.

Suppose a is a variable. We aim to find b in terms of a so that the ellipse intersects the hyperbolas with a common tangent line.

This means that there is a repeated root in the solution for x in terms of a .

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
$$

$$
\frac{x^2}{a^2} + \frac{1}{b^2 x^2} = 1
$$

$$
x^4 + \frac{a^2}{b^2} - a^2 x^2 = 0
$$

Let $u = x^2$:

$$
u^2 - a^2u + \frac{a^2}{b^2} = 0
$$

This has repeated roots when $a^4 - \frac{4a^2}{b^2} = 0$.

$$
a^2\left(a^2-\frac{4}{b^2}\right)=0
$$

So $b = \frac{2}{a}$.

Now the area of the ellipse is $A = \pi ab = \pi a \times \frac{2}{a} = 2\pi$.

Since the area of the ellipse does not vary with a , all ellipses which touch the hyperbolas have the same maximal area.

