Assessment Schedule – 2016 Scholarship Calculus (93202) Evidence Statement

Question One

(a) Method 1

$$\frac{y}{x} = \frac{\sqrt{3 - (x - 2)^2}}{x}$$

$$\frac{d}{dx} \left(\frac{y}{x}\right) = \frac{-2(x - 2) \cdot x}{2\sqrt{3 - (x - 2)^2} \cdot x^2} - \frac{\sqrt{3 - (x - 2)^2}}{x^2} = 0$$

$$(x - 2)^2 - 3 - (x - 2)x = 0; \quad x = \frac{1}{2}, \quad \left(\frac{y}{x}\right)_{max} = \sqrt{3}$$

Method 2

$$\left(\frac{y}{x}\right)^2 = \frac{3 - (x - 2)^2}{x^2} = m$$

(m+1)x² + 4x + 1 = 0, $\Delta = 16 - 4(m+1) \ge 0, m \le 3, \left(\frac{y}{x}\right) \le \sqrt{3}$

(b)(i)

$$y' = 2x \ln(1+x) + \frac{x^2}{1+x} = 2x \ln(1+x) + (x-1+(1+x)^{-1})$$

$$y'' = 2 \ln(1+x) + \left(\frac{2x}{1+x}\right) + 1 + (-1)(1+x)^{-2}$$

$$= 2 \ln(1+x) + (2-2(1+x)^{-1}) + 1 + (-1)(1+x)^{-2}$$

$$f^{(2)}(0) = 0 + 0 + 1 - 1 = 0$$

(ii)

$$y' = 2x \ln(1+x) + \frac{x^2}{1+x} = 2x \ln(1+x) + (x-1+(1+x)^{-1})$$

$$y'' = 2 \ln(1+x) + \left(\frac{2x}{1+x}\right) + 1 + (-1)(1+x)^{-2}$$

$$= 2 \ln(1+x) + (2-2(1+x)^{-1}) + 1 + (-1)(1+x)^{-2}$$

$$y''' = 2(1+x)^{-1} - 2(-1)(1+x)^{-2} + (-1)(-2)(1+x)^{-3}$$

...

$$y^{(2016)} = 2(-1)(-2)...(-2013)(1+x)^{-2014} - 2(-1)(-2)...(-2014)(1+x)^{-2015} + (-1)(-2)...(-2015)(1+x)^{-2016}$$

$$y^{(2016)}(0) = -2 \times 2013! - 2 \times 2014! - 2015!$$

$$\left(= -2013!(2015 \times 2016) = \frac{-2016!}{2014} \right)$$

Question Two

(a)

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^{5} x + \cos^{5} x) dx = 0 + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos^{5} x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \sin^{2} x)^{2} \cos x \, dx$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[(1 - 2\sin^{2} x + \sin^{4} x) \cos x \right] dx = \left[\sin x - \frac{2\sin^{3} x}{3} + \frac{\sin^{5} x}{5} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{16}{15}$$
(b)

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2nx}{\sin x} \, dx$$

$$I_{n} - I_{n-1} = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2nx - \sin(2nx - 2x)}{\sin x} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{2\sin x \cos(2nx - x)}{\sin x} \, dx$$

$$= \frac{2}{2n-1} \sin \frac{(2n-1)\pi}{2} = \frac{2(-1)^{n-1}}{2n-1}$$

(c) Note the following facts:

$$\tan\theta + \cot\theta = \frac{1}{\sin\theta\cos\theta}$$
$$\log_a b = \frac{\log b}{\log a}.$$
$$\therefore \log_{\tan\theta + \cot\theta} \cos\theta = \frac{\log\cos\theta}{\log(\tan\theta + \cot\theta)} = \frac{\log\cos\theta}{-\log(\sin\theta\cos\theta)} = -\frac{\log\cos\theta}{\log\sin\theta + \log\cos\theta}$$
$$= -\frac{1}{\frac{\log\sin\theta}{\log\cos\theta} + 1} = k \quad \rightarrow \quad \frac{\log\sin\theta}{\log\cos\theta} = -\frac{1}{k} - 1$$
$$\log_{\tan\theta} \sin\theta = \frac{\log\sin\theta}{\log\tan\theta} = \frac{\log\sin\theta}{\log\sin\theta - \log\cos\theta} = \frac{1}{1 - \frac{\log\cos\theta}{\log\sin\theta}} = \frac{1}{1 + \frac{k}{k+1}} = \frac{k+1}{2k+1}$$

Question Three

(a) Let
$$f(x) = x - a$$
.
 $a = \int_{0}^{\frac{\pi}{2}} f(x) \sin x \, dx = \int_{0}^{\frac{\pi}{2}} (x - a) \sin x \, dx = \left[-x \cos x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, dx + \left[a \cos x \right]_{0}^{\frac{\pi}{2}} = 1 - a$
 $a = \frac{1}{2} \quad \therefore f(x) = x - \frac{1}{2}$

(b)

(1)
$$\frac{d(e^{2x}y)}{dx} = 2e^{2x}y + e^{2x}\frac{dy}{dx} = 2e^{2x}y + e^{2x}(x - 2y) = xe^{2x}$$

(2)
$$e^{2x}y = \int xe^{2x}dx = \frac{1}{2}xe^{2x} - \frac{1}{2}\int e^{2x}dx = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$$
$$e^{2} = \frac{1}{2}e^{2} - \frac{1}{4}e^{2} + c \rightarrow c = \frac{3}{4}e^{2}$$
$$y = e^{-2x}\left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + \frac{3}{4}e^{2}\right) = \frac{1}{4}\left(3e^{2-2x} + 2x - 1\right)$$

(1)

Question Four

(a) Asymptotes
$$y = \pm 3x$$
, $\tan \alpha = 3$, $\frac{\sin^2 \alpha}{1 - \sin^2 \alpha} = 9$, $\sin^2 \alpha = \frac{9}{10}$, $\cos^2 \alpha = \frac{1}{10}$
 $\sin \theta = \sin(180^0 - 2\alpha) = \sin(2\alpha) = 2 \times \sqrt{\frac{9}{10}} \times \sqrt{\frac{1}{10}} = 0.6$

(b) Method 1

$$y = \pm 3x, \ \frac{|3x_0 - y_0|}{\sqrt{10}} \cdot \frac{|3x_0 + y_0|}{\sqrt{10}} = \frac{36}{10} = 3.6$$

Method 2

$$l_{1}: y = 3x,$$

$$l_{PA}: y - y_{0} = -\frac{1}{3}(x - x_{0}) \rightarrow A: (0.1x_{0} + 0.3y_{0}, 0.3x_{0} + 0.9y_{0})$$

$$PA = \sqrt{0.9x_{0}^{2} + 0.1y_{0}^{2} - 0.6x_{0}y_{0}} = \frac{1}{\sqrt{10}} |3x_{0} - y_{0}|$$

$$l_{2}: y = -3x,$$

$$l_{PB}: y - y_{0} = \frac{1}{3}(x - x_{0}) \rightarrow B: (0.1x_{0} - 0.3y_{0}, -0.3x_{0}, +0.9y_{0})$$

$$PB = \sqrt{0.9x_{0}^{2} + 0.1y_{0}^{2} + 0.6x_{0}y_{0}} = \frac{1}{\sqrt{10}} |3x_{0} + y_{0}|$$

$$PA \cdot PB = \frac{|3x_{0} - y_{0}|}{\sqrt{10}} \cdot \frac{|3x_{0} + y_{0}|}{\sqrt{10}} = \frac{36}{10} = 3.6$$

(c) Let
$$P(x_0, y_0)$$
, $m_{CD} = k$. Note: $|k| > 3$
 $l_{CD}: y - y_0 = k(x - x_0)$, $y = \pm 3x$
 $C: \left(\frac{kx_0 - y_0}{k - 3}, \frac{3(kx_0 - y_0)}{k - 3}\right)$, $D: \left(\frac{kx_0 - y_0}{k + 3}, \frac{-3(kx_0 - y_0)}{k + 3}\right)$
Note that $\sin \angle COD = 0.6$
Area <sub>$\Delta COD = $\frac{1}{2} \times 0.6 \times \sqrt{10} \left(\frac{kx_0 - y_0}{k - 3}\right) \times \sqrt{10} \left(\frac{kx_0 - y_0}{k + 3}\right)$
 $= \frac{3(kx_0 - y_0)^2}{(k^2 - 9)}$
Since CP : PD = 1: λ ,
 $x_0 = \frac{1}{\lambda + 1} \left(\lambda \frac{kx_0 - y_0}{k + 3} + \frac{kx_0 - y_0}{k - 3}\right) = \frac{kx_0 - y_0}{\lambda + 1} \left(\frac{\lambda}{k + 3} + \frac{1}{k - 3}\right)$,$</sub>

$$y_{0} = \frac{1}{\lambda + 1} \left(\lambda \frac{-3(kx_{0} - y_{0})}{k + 3} + \frac{3(kx_{0} - y_{0})}{k - 3} \right) = \frac{3(kx_{0} - y_{0})}{\lambda + 1} \left(\frac{-\lambda}{k + 3} + \frac{1}{k - 3} \right)$$
(2)
$$\frac{x_{0}^{2}}{4} - \frac{y_{0}^{2}}{36} = 1 \rightarrow \frac{(kx_{0} - y_{0})^{2}}{(k^{2} - 9)} = \frac{(\lambda + 1)^{2}}{\lambda}$$
area_{\DeltaCOD} = $\frac{3(\lambda + 1)^{2}}{\lambda} = 3\left(\lambda + 2 + \frac{1}{\lambda}\right),$

min area_{$\Delta COD} = 12$, when $\lambda = 1$ (since $\lambda + \frac{1}{\lambda} \ge 2$).</sub>

Question Five

$$\begin{aligned} z_i &= \cos\left(\frac{2k\pi}{11}\right) + i\sin\left(\frac{2k\pi}{11}\right), \ k = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \\ \because z^{11} + 0 \cdot z - 1 &= 0 \\ \therefore \sum_{1}^{11} z_i &= 0; \\ 1 + \left(\cos\left(\pm\frac{2\pi}{11}\right) + i\sin\left(\pm\frac{2\pi}{11}\right)\right) + \dots + \left(\cos\left(\pm\frac{10\pi}{11}\right) + i\sin\left(\pm\frac{10\pi}{11}\right)\right) = 0 \\ \cos\left(\frac{2\pi}{11}\right) + \cos\left(\frac{4\pi}{11}\right) + \cos\left(\frac{6\pi}{11}\right) + \cos\left(\frac{8\pi}{11}\right) + \cos\left(\frac{10\pi}{11}\right) = -\frac{1}{2} \end{aligned}$$

(b) **EITHER**

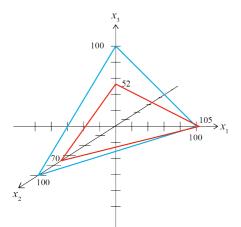
	Question Type					
	Group 1 (x_1)	Group 2 (x_2)	Group 3 (x_3)			
Marks	4	5	6			
Time	2	3	4			

$x_1 + x_2 + x_3 \le 100$	constraint 1
$2x_1 + 3x_2 + 4x_3 \le 210$	constraint 2
$2x_1 + 3x_2 \le 150$	constraint 3
$x_1 \ge 0$	constraint 4
$x_2 \ge 0$	constraint 5
$x_3 \ge 0$	constraint 6
Objective function: Grade =	$4x_1 + 5x_2 + 6x_3$

Feasible Solutions are found at vertices. (0,0,0) is feasible but not helpful. Constraint (1) has vertices (100,0,0), (0,100,0) and (0,0,100). However, constraints 3 and 2 define the max values for the question groups as $x_1 \le 75$, $x_2 \le 50$ and $x_3 \le 52$. Constraint 2 has vertices (105,0,0), (0,70,0), (0,0,52.5). This plane lies mostly between the plane defined by constraint 1 and the origin. All intersections lie in a region where $x_1 \ge 75$. By constraint 3, no feasible solutions in this region. Any feasible solutions now lie between plane 2 and the origin.

Only one vertex of plane 2 offers a feasible solution, being (0,0,52.5). After truncation, the objective function yields $\text{Grade} = 4 \times 0 + 5 \times 0 + 6 \times 52 = 312.$

The vertices of constraint 3 are (75,0,0), (0,50,0) and (0,0, x_3): a plane with one side fixed and the other two dependent on x_3 .



This plane lies between the planes defined by constraints 1 & 2 and the origin, with no intersections.

Objective function applied to the vertices (75,0,0) and (0,50,0) gives us, respectively,

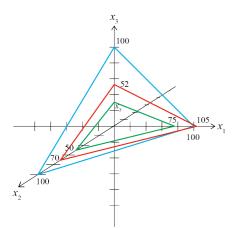
Grade = $4 \times 75 = 300$ and Grade = $5 \times 50 = 250$. We have no improvement on 312.

The value of x_3 in constraint 3 is "checked" by constraint 2. Consider the boundary equations from constraints 2 & 3: $2x_1 + 3x_2 + 4x_3 \le 210$ eq 2

 $2x_1 + 3x_2 = 150$ eq 3

Eq 2 – eq 3 gives $4x_3 = 60$ or $x_3 = 15$.

So, fixing $x_3 = 15$ means the other two vertices of constraint 3 are (75,0,15) and (0,50,15).



Applying these vertices to the objective function gives:(0,0,15)Grade = $6 \times 15 = 90$ (75,0,15)Grade = $75 \times 4 + 15 \times 6 = 390$ (0,50,15)Grade = $50 \times 5 + 15 \times 6 = 340$ The student should therefore complete 75 group 1 questions and 15 group 3.

Alternative solutions:

Iterative approach to Linear Programming Question – some students may	know this method from extension classes or
conjoint university papers.	

Table 1

Introducing slack variables x_4 , x_5 and x_6

Grades	4	5	6	0	0	0	Eqn	
Variable	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6		
X4	1	1	1	1	0	0	100	100
X5	2	3	4	0	1	0	210	52.5
X6	2	3	0	0	0	1	150	NA
Zi	0	0	0	0	0	0		
Δi	-4	-5	-6	0	0	0		

Table 2, new basis x_4 , x_3 , x_6

Grades	4	5	6	0	0	0	Eqn	
Variable	x_1	x_2	x_3	x_4	x_5	x_6		
X4	1/2	1/4	0	1	-1/4	0	47.5	95
X3	1/2	3/4	1	0	1/4	0	52.5	105
X6	2	3	0	0	0	1	150	75
Zi	3	18/4	6	0	3/2	0		
Δi	-1	-1/2	0	0	3/2	0		

Table 3, new basis x_4 , x_3 , x_1

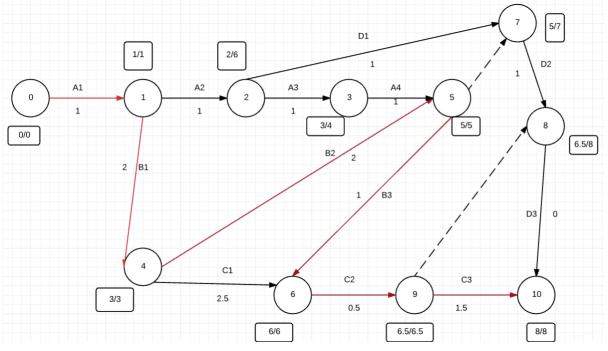
Grades	4	5	6	0	0	0	Eqn	
Variable	x_1	x_2	x_3	x_4	x_5	x_6		
X4	0	-1/2	0	1	-1/4	0	10	
X3	0	0	1	0	1/4	0	15	
X1	1	3/2	0	0	0	1/2	75	
Zi	4	6	6	0	3/2	2		
Δi	0	1	0	0	3/2	2		

No negative Δi , end of iterations and the optimal basis is x_4 , x_3 , x_1 . x_4 is slack with zero grade value, so the objective function gives Grade = $75 \times 4 + 15 \times 6 = 390$.

OR

We redefine the tasks by splitting A, B, C and D into subtasks.

Task	Duration	Dependency tree
A1 (1/3 complete)	1	
A2 (2/3 complete)	1	A1
A3 (complete)	1	A2
A4 (1 hour after completion of A)	1	A3
B1 (1/2 of B)	2	A1
B2 (1/2) of B)	2	B1, A4
B3 (1 hour after completion of B)	1	B2
C1 (first 1/2 of C)	2.5	B1
C2 (3/5 of C complete)	0.5	B3
C3 (final 2/5 of C)	2	C2
D1 (first 1/2 of D)	1	A2, B2
D2 (second 1/2 of D)	1	D1
D3 (Completion)	0	D1,C2



Associated Network : Critical Path is A1, B1, B2, B3, C2, C3. Duration is 8.5 hours.

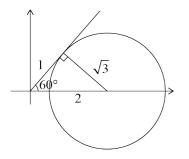
Additional Solutions Scholarship Calculus 93202

Question One

(a) (x,y) is on circle. Maximum of $\frac{y}{x} = k$ y = kx

Want maximum gradient k

Occurs when $\mathbf{k} = \tan(\text{angle}) = \tan 60 = \sqrt{3}$



Question Three

(a) Clearer solution.

Note that a definite integral is a constant, thus f(x) = x - a, f'(x) = 1 and f(0) = -a.

$$a = \int_{0}^{\frac{\pi}{2}} f(x) \sin x \, dx = \left[-f(x) \cos x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} f(x) (-\cos x) \, dx$$

$$a = f(0) + \int_{0}^{\frac{\pi}{2}} \cos x \, dx$$

$$a = -a + 1$$

$$a = \frac{1}{2}$$

Required function $(x) = x - \frac{1}{2}$

Question Five

(b): Alternative (shorter) method for Linear Programming option.

Further constraints: $2x_1 + 3x_2 + 4x_3 \le 210$ $2x_1 + 3x_2 \le 150 \Rightarrow x_3 \ge 15$

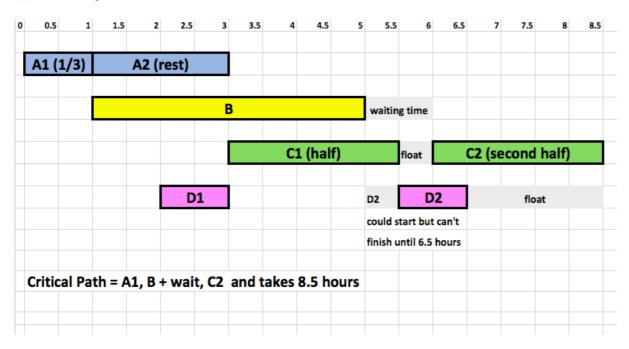
As the only constraint (apart from questions answered) is time related, to maximise the grade we should consider points per minute when determining what is the optimal solution.

 $G = 4x_1 + 5x_2 + 6x_3$

Question	Time	Points	Points per minute
x_1	2	4	2
x_2	3	5	1.67
x_3	4	6	1.5

So complete as many x_1 as possible (150 minutes \Rightarrow 75 of these) The rest of the time should be spent on x_3 (60 minutes left \Rightarrow 15 of these).

Maximum grade = 390 with the combination $(x_1, x_2, x_3) = (75, 0, 15)$



(b) Networks option - Gantt chart solution